拓扑绝缘体提出了实现能量无损传输的令人兴奋的希望,这在超低温下是真的。然而,拓扑绝缘体无法在室温下保持这种无损的“魔力”。
来自莫纳什大学(FLEET中心的一部分)的研究人员发现了拓扑绝缘体效率的新见解,阐明了它们在超低温下神奇的无损能量传输与在室温下出现的有害问题之间的显着差异。
这项研究发表在《纳米尺度》杂志上,研究了为什么拓扑绝缘体在实际工作环境中面临着保持其特性的严峻挑战,特别是电子-声子相互作用的作用。
拓扑绝缘体,特别是二维(2D)拓扑绝缘体,以其独特的特性而闻名,即通过边界/边缘导电,而体表面保持电绝缘。
这种独特的特性允许无后向散射的单向载流子传输,由此产生的散射诱导电阻可以忽略不计,从而产生无耗散载流子传输的期望。
事实上,在超低温下,这些拓扑绝缘体通常表现出无耗散载流子输运,符合预期。然而,当温度上升到室温时,维持这一特性面临着严峻的挑战,此时声子(晶格振动的量子)与载流子一起发挥作用。
本研究深入分析了载流子与声子的相互作用,以及不同温度下二维拓扑绝缘体中的能量输运。
电子和声子之间的相互作用(即电子-声子相互作用)在观察到的电阻显著增加中起着至关重要的作用。
理论模型表明,电子-声子散射是拓扑边缘态后向散射的重要来源,相互作用的强度与电子边缘态的色散密切相关。
这种相互作用随着温度的升高而显著增加,并且在原生边缘的非线性分散状态下比钝化边缘的线性分散状态下更强,在200-400 K的温度范围内造成了显著的能量耗散。
因此,这项研究阐明了在超低温和实际操作室温下的性能差异。
“由于我们在这项研究中考虑了线性和非线性边缘色散,我们的结果可以适用于各种拓扑绝缘体,”该研究的主要作者Enamul Haque说。
提高对二维拓扑绝缘体边缘电子-声子散射作用的基本理解,对于推进基于二维拓扑绝缘体的未来电子学技术至关重要。然而,以往的工作主要集中在三维拓扑绝缘子的表面状态和二维拓扑绝缘子的绝缘表面。
哈克说:“我们的发现对于推进拓扑绝缘体在实际电子设备中的应用起着至关重要的作用。”
这项研究的理解可以指导寻找新的量子材料或如何克服现有的限制。通过在室温下克服这些问题,科学家们可以在实现拓扑绝缘体在实际技术中的全部潜力应用方面取得进展,例如量子晶体管和量子器件。
“对拓扑边缘态中电子-声子相互作用的清晰理解可以帮助在量子比特中发展强大的量子退相干,这可能会增强量子计算机的稳定性和可扩展性,”首席研究员和FLEET首席研究员Nikhil Medhekar教授说。
本文来自作者[夜彤]投稿,不代表依然号立场,如若转载,请注明出处:https://www.yrqmq.cn/cshi/202508-2903.html
评论列表(4条)
我是依然号的签约作者“夜彤”!
希望本篇文章《科学家揭示拓扑绝缘体中能量无损传输的实际机制》能对你有所帮助!
本站[依然号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:拓扑绝缘体提出了实现能量无损传输的令人兴奋的希望,这在超低温下是真的。然而,拓扑绝缘体无法在室温下保持这种无损的“魔力”。 来自莫纳什大学(FLEET中心的一部分)的研...